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S2. Model descriptions 

(i) Generalized logistic growth model 

The generalized logistic growth model (GLM) [1] displays a range of epidemic growth patterns 

including the polynomial and exponential growth patterns. GLM characterizes epidemic 

growth by estimating three parameters: (i) the intrinsic growth rate, r (ii) a dimensionless 

"deceleration of growth" parameter, p ∈[0,1] and (iii) 𝑘!,	representing the final epidemic size 

[1]. The varied epidemic growth patterns are observed by the modulation of deceleration of 

growth parameter resulting in the exponential growth dynamics (p=1), sub-exponential growth 

(0<p<1), or constant incidence (p=0) patterns, if 𝑘! = ∞. When 𝑘! < ∞ and p=1, the GLM is 

the simple logistic growth model. The following differential equation gives the GLM model:  

 

𝑑𝐶(𝑡)
𝑑𝑡 = 𝑟𝐶(𝑡)" 01 −

𝐶(𝑡)
𝑘!
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where 𝐶(𝑡) denotes the cumulative number of cases at time 𝑡, and 𝑑𝐶(𝑡) 𝑑𝑡⁄  describes the 

incidence at time t [1].  

 

(ii) Richards growth model 

The well-known Richards model [2] is a simple extension of the logistic model that relies on 

three parameters; growth rate, 𝑟, final epidemic size, 𝑘# and the scaling parameter, a. The 

scaling parameter, a, measures the deviation from the symmetric S-shaped dynamics exhibited 

by the simple logistic growth curve [2-4]. The following differential equation gives the 

Richards model: 
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where 𝐶(𝑡) represents the cumulative case count at time 𝑡. We remark that the Richards 

growth model has the explicit solution  
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, 

 

while the GLM does not admit a closed-form solution. For a unified treatment of all 

phenomenological growth models, we always refer to the corresponding differential equation 

in each case irrespective of the existence of a closed-form solution. Details are provided in a 

prior study [5]. 

 

(iii) Sub-epidemic wave model.  

The sub-epidemic model [6] is based on the premise that various profiles of overlapping sub-

epidemics shape the aggregated reported epidemic wave. In particular, this modeling approach 

supports complex temporal dynamic patterns, such as oscillating dynamics leading to damped 

oscillations or endemic states. This model characterizes each sub-epidemic utilizing a three-

parameter generalized logistic growth model as explained above and given in equation (1).  

We model an epidemic wave comprising of n overlapping sub-epidemics using a system of 

coupled differential equations, as follows: 

𝑑𝐶2(𝑡)
𝑑𝑡 = 	𝑟𝐴201(𝑡)𝐶2(𝑡)" :1 −

𝐶2(𝑡)
𝑘2

; 

In this equation, 𝐶2(𝑡) describes the cumulative cases for the ith sub-epidemic, and 𝑘2 is the size 

of sub-epidemic i (i=1,2,….n). Parameters r and p are the same across the sub-epidemics. The 

coefficient 𝐴2(𝑡) is an indicator variable that models the onset timing of (i+1)th sub-epidemic, 

making sure that sub-epidemics comprising an epidemic wave follow a regular structure. 

Therefore,  



𝐴2(𝑡) = <	1		𝐶2(𝑡) > 𝐶'3.
0	𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	𝑖 = 1,2,3, …𝑛-1, 

 

Where 1 ≤ 𝐶'3. < 𝑘# and 𝐴!(𝑡) = 1 for the first sub-epidemic. Therefore, when n = 1 and p 

= 1, the sub-epidemic model becomes the simple logistic model. Moreover, for the 

subsequently occurring sub-epidemics, the size of ith sub-epidemic (𝑘2) declines exponentially 

at a rate q:  

𝑘2 = 𝑘!𝑒04(201), 

where 𝑘!	is the size of the initial sub-epidemic (𝑘2 = 𝑘!). The exponential decline in the size 

of ith sub-epidemic can occur due to multiple factors, including the effect of interventions, 

changes in disease transmission dependent on seasonality and behavior changes [6]. 

 

(iv) Generalized growth model (GGM) 

The generalized growth model (GGM) characterizes the early ascending phase of the epidemic 

by estimating two parameters: (1) the intrinsic growth rate, 𝑟; and (2) a dimensionless 

“deceleration of growth” parameter, 𝑝. The deceleration of growth parameter, 𝑝, allows this 

model to capture a range of epidemic growth profiles. The following differential equation gives 

the GGM model:  

𝑑𝐶(𝑡)
𝑑𝑡 = 𝐶5(𝑡) = 𝑟𝐶(𝑡)" 

In this equation, 𝐶5(𝑡) describes the incidence curve over time 𝑡, solution 𝐶(𝑡) describes the 

cumulative number of cases at time 𝑡 and 𝑝 is the modulating "deceleration of growth" 

parameter (0 ≤ 𝑝 ≤1). This equation displays constant incidence over time if 𝑝=0 and becomes 

an exponential growth model for cumulative cases if 𝑝 =1. The model shows sub-exponential 

growth dynamics if 𝑝 is in the range 0< 𝑝 <1 [3, 7].  
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